Multitask Learning for Brain-Computer Interfaces

نویسندگان

  • Morteza Alamgir
  • Moritz Grosse-Wentrup
  • Yasemin Altun
چکیده

Brain-computer interfaces (BCIs) are limited in their applicability in everyday settings by the current necessity to record subjectspecific calibration data prior to actual use of the BCI for communication. In this paper, we utilize the framework of multitask learning to construct a BCI that can be used without any subject-specific calibration process. We discuss how this out-of-the-box BCI can be further improved in a computationally efficient manner as subject-specific data becomes available. The feasibility of the approach is demonstrated on two sets of experimental EEG data recorded during a standard two-class motor imagery paradigm from a total of 19 healthy subjects. Specifically, we show that satisfactory classification results can be achieved with zero training data, and combining prior recordings with subjectspecific calibration data substantially outperforms using subject-specific data only. Our results further show that transfer between recordings under slightly different experimental setups is feasible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed-Norm Regularization for Brain Decoding

This work investigates the use of mixed-norm regularization for sensor selection in event-related potential (ERP) based brain-computer interfaces (BCI). The classification problem is cast as a discriminative optimization framework where sensor selection is induced through the use of mixed-norms. This framework is extended to the multitask learning situation where several similar classification ...

متن کامل

Multisubject Learning for Common Spatial Patterns in Motor-Imagery BCI

Motor-imagery-based brain-computer interfaces (BCIs) commonly use the common spatial pattern filter (CSP) as preprocessing step before feature extraction and classification. The CSP method is a supervised algorithm and therefore needs subject-specific training data for calibration, which is very time consuming to collect. In order to reduce the amount of calibration data that is needed for a ne...

متن کامل

Selecting and Extracting Effective Features of SSVEP-based Brain-Computer Interface

User interfaces are always one of the most important applied and study fields of information technology. The development and expansion of cognitive science studies and functionalization of its tools such as BCI1, as well as popularization of methods such as SSVEP2 to stimulate brain waves, have led to using these techniques every day, especially in appropriate solutions for physically and menta...

متن کامل

EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP

Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...

متن کامل

EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP

Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010